Multivibrators

Monostable multivibrator - provides a one-off pulse of predetermined pulse width T_w when triggered by an input pulse with width $T_p \ll T_w$.

- provides a gaining pulse after a fixed delay.

Schmitt triggers and flip-flops have two stable states. If one state is suppressed, the circuit becomes a monostable multivibrator, with one stable state and one quasi-stable state (for time T_w only). A single trigger signal is used as input to switch from the stable to the quasi-stable state. These are regenerative circuits - switching transitions are fast.

Schmitt trigger monostable multivibrator

Assume circuit is in stable state

$v_o = +V_m \quad v_+ = \frac{R_2}{R_1+R_2} V_m \quad v_- \approx 0.7 \, V$

Choose R_1, R_2 to ensure $\frac{R_2}{R_1+R_2} V_m > 0.7 \, V$

Now apply a pulse v_p of |voltage| $> \frac{R_2}{R_1+R_2} V_m - 0.7$

Comparator switches to $-V_m$

Capacitor charges towards $-V_m$ (no current flows through D_1), until it reaches $v_+ = -\frac{R_2}{R_1+R_2} V_m$. At this point, the comparator switches back to $v_o = +V_m$, but C only charges to $0.7 \, V$ because D_1 is now forward-biased.
During charging of \(C \) towards \(-V_m \),

\[
\begin{align*}
V_c &= -V_m - (V_m - 0.7) \exp\left(-\frac{t}{RC}\right) \\
-\frac{R_2}{R_1 + R_2} V_m &= -V_m + (V_m + 0.7) \exp\left(-\frac{t}{RC}\right) \\
\frac{R_1}{R_1 + R_2} V_m &= (V_m + 0.7) \exp\left(-\frac{t}{RC}\right) \\
-\frac{t}{RC} &= \ln\left(\frac{R_1 + R_2}{R_1} \cdot \frac{V_m + 0.7}{V_m}\right) \\
T &= RC \ln\left(\frac{R_1 + R_2}{R_1} \cdot \frac{V_m + 0.7}{V_m}\right)
\end{align*}
\]

\(T_p \) must be much smaller than \(T_w \). \(D_2 \) prevents spurious triggering in the case of any positive spikers in the trigger signal.

\(V_o \) can be used to gate other circuits, or generate a fast transition at a delay \(T_w \) after the trigger.

Note that once the circuit returns to its stable state, it requires a recovery time of \(T_p \), so that re-triggering can only occur after \(T + T_r \).

Can reduce \(T_r \) if \(R \) is replaced by:

\[(R' < R) \]
Retriggerable monostable

\[V_{cc} \]

\[V_p = V_{cc} - \frac{R_2}{R_1 + R_2} V_{cc} \]

\[V_o = -V_{cc} \]

Start by assuming JFET \(T_1 \) is off

\[V_c = V_{cc} = V_p \]

\[V_+ = \frac{R_1}{R_1 + R_2} V_{cc} \]

At \(t = 0 \) a positive pulse \(V_p \) turns on \(T_1 \), and discharges \(C \) (almost linearly)

Assuming \(T_p \ll T_w \), when \(V_c \) falls below \(\frac{R_2}{R_1 + R_2} V_{cc} \), \(V_o \) switches to \(+V_{cc} \)

\(V_c \) charges towards \(V_{cc} \) again, until it reaches \(\frac{R_2}{R_1 + R_2} V_{cc} \), \(V_o \) switches back to \(-V_{cc} \)

For \(T_p \ll T_w \),

\[T_w = RC \ln \left(\frac{R_1 + R_2}{R_1} \right) + T_p \]

\[V_c(t) \approx V_{cc} - \left(V_{cc} - 0 \right) \exp \left(-\frac{t}{RC} \right) \]

\[V_c(T_w) \approx \frac{R_1}{R_1 + R_2} V_{cc} = V_{cc} - V_{cc} \exp \left(-\frac{T_w}{RC} \right) \]

\[T_w \approx RC \ln \left(\frac{R_1 + R_2}{R_1} \right) + T_p \]

\(T_p \) needs to be long enough to allow \(C \) to discharge to 0; in practice this can still be much less than \(T_w \)

If a new trigger pulse appears at any time (less than or greater than \(T_w \)), \(C \) discharges to 0 and the output reverts to (or stays at \(+V_{cc} \)) → can be retrigged at any time.

If a new pulse appears at \(t' < T_w \), then the pulse width will be \(t' + T_w \).
Monostable based on logic gates

At $t=0$, v_2 is high (V_{DD}), v_0 is low (0 V), v_p is low, so v_1 is high.

At $t>0$, v_p goes high, so NOR output v_1 goes low. Since the voltage across C cannot change instantaneously, v_2 starts low i.e. v_0 goes high.

As C charges up, $v_0 = V_{DD} \left(1 - \exp\left(-\frac{t}{RC}\right)\right)$ and v_2 rises. When v_2 reaches the inverter threshold (typically $\frac{1}{2}V_{DD}$), the output v_0 switches back to low again. So $T_w = RC \ln\left(\frac{V_{DD}}{V_{DD} - V_{th}}\right)$, where V_{th} is the inverter threshold.

$v_0 \rightarrow$ low causes v_1 to go high (v_p is zero again, since $T_p \ll T$). Since v_2 is still at V_{th}, it overshoots to $V_{th} + V_{DD}$ before decaying back to V_{DD}.

Re-triggerable after T_w.

![Diagram](image-url)