Request For Quotation

Order the parts you need from our real-time inventory database. Simply complete a request for quotation form with your part information and a sales representative will respond to you with price and availability.

Request For Quotation

Your free datasheet starts on the next page.

More datasheets and data books are available from our homepage: http://www.datasheetarchive.com

This datasheet has been downloaded from http://www.datasheetarchive.com.
General Description
The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.

The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

Features
- 741 op amp operating characteristics
- Low supply current drain 0.6 mA/Amplifier
- Class AB output stage—no crossover distortion
- Pin compatible with the LM124
- Low input offset voltage 1 mV
- Low input offset current 4 nA
- Low input bias current 30 nA
- Gain bandwidth product
 - LM148 (unity gain) 1.0 MHz
 - LM149 (AV ≥ 5) 4 MHz
- High degree of isolation between amplifiers 120 dB
- Overload protection for inputs and outputs

Schematic Diagram
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22V</td>
<td>±18V</td>
<td>±18V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±44V</td>
<td>±36V</td>
<td>±36V</td>
</tr>
<tr>
<td>Output Short Circuit Duration (Note 1)</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Power Dissipation (Pd at 25°C) and Thermal Resistance (θJA), (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molded DIP (N) Pd</td>
<td>—</td>
<td>—</td>
<td>750 mW</td>
</tr>
<tr>
<td>Cavity DIP (J) Pd</td>
<td>1100 mW</td>
<td>800 mW</td>
<td>700 mW</td>
</tr>
<tr>
<td>Maximum Junction Temperature (TjMAX)</td>
<td>150°C</td>
<td>110°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−55°C ≤ TA ≤ +125°C</td>
<td>−25°C ≤ TA ≤ +85°C</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td>−65°C to +150°C</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.) Ceramic</td>
<td>300°C</td>
<td>300°C</td>
<td>300°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.) Plastic</td>
<td>260°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-In-Line Package</td>
<td>260°C</td>
<td>260°C</td>
<td>260°C</td>
</tr>
<tr>
<td>Small Outline Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Phase (60 seconds)</td>
<td>215°C</td>
<td>215°C</td>
<td>215°C</td>
</tr>
<tr>
<td>Infrared (15 seconds)</td>
<td>220°C</td>
<td>220°C</td>
<td>220°C</td>
</tr>
</tbody>
</table>

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD tolerance (Note 5) 500V 500V 500V

Electrical Characteristics (Note 3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 25°C, RS ≤ 10 kΩ</td>
<td>1.0 5.0</td>
<td>1.0 6.0</td>
<td>1.0 6.0</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = 25°C</td>
<td>4.25</td>
<td>4.50</td>
<td>4.50</td>
<td>nA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = 25°C</td>
<td>30 100</td>
<td>30 200</td>
<td>30 200</td>
<td>nA</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = 25°C</td>
<td>0.8 2.5</td>
<td>0.8 2.5</td>
<td>0.8 2.5</td>
<td>kΩ</td>
</tr>
<tr>
<td>Supply Current All Amplifiers</td>
<td>TA = 25°C, VS = ±15V</td>
<td>2.4</td>
<td>3.6</td>
<td>2.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>TA = 25°C, VS = ±15V</td>
<td>50 160</td>
<td>25 160</td>
<td>25 160</td>
<td>V/mV</td>
</tr>
<tr>
<td>Amplifier to Amplifier Coupling</td>
<td>TA = 25°C, f = 1 Hz to 20 kHz (Input Referenced) See Crosstalk Test Circuit</td>
<td>−120</td>
<td>−120</td>
<td>−120</td>
<td>dB</td>
</tr>
<tr>
<td>Small Signal Bandwidth</td>
<td>TA = 25°C</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>MHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>LM148 Series</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>MHz</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>LM148 Series (AV = 1)</td>
<td>0.5 0.5</td>
<td>0.5 0.5</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>TA = 25°C</td>
<td>25 25</td>
<td>25 25</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>RS ≤ 10 kΩ</td>
<td>6.0 7.5</td>
<td>7.5 8.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>75 125</td>
<td>100 nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>325 500</td>
<td>400 nA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics (Note 3) (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V_S = \pm 15V, V_{OUT} = \pm 10V, R_L > 2 \Omega$</td>
<td>25</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 15V, R_L = 10 \Omega$</td>
<td>± 12</td>
<td>± 13</td>
<td>± 12</td>
</tr>
<tr>
<td></td>
<td>$R_L = 2 \Omega$</td>
<td>± 10</td>
<td>± 12</td>
<td>± 10</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>$V_S = \pm 15V$</td>
<td>± 12</td>
<td>± 12</td>
<td>± 12</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td></td>
<td>77</td>
<td>96</td>
<td>77</td>
</tr>
<tr>
<td>Supply Voltage Rejection</td>
<td>$R_S \leq 10 \Omega, V_S = \pm 15V$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX}, T_A, and the ambient temperature. The maximum available power dissipation at any temperature is $P_d = (T_{JMAX} - T_A)/\theta_J$ or the 25°C P_{DMAX} whichever is less.

Note 3: These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range ($T_L \leq T_A \leq T_H$) unless otherwise noted.

Note 4: Refer to RETS 148X for LM148 military specifications and refer to RETS 149X for LM149 military specifications.

Note 5: Human body model, 1.5 kΩ in series with 100 pF.

Cross Talk Test Circuit

Application Hints

The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance.

The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5.

The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.

The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.

Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier, a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.

The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.

As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Typical Performance Characteristics

Supply Current

Input Bias Current

Voltage Swing

Positive Current Limit

Negative Current Limit

Output Impedance

Common-Mode Rejection Ratio

Open Loop Frequency Response

Bode Plot LM148

Bode Plot LM149

Large Signal Pulse Response (LM148)

Large Signal Pulse Response (LM149)
Typical Performance Characteristics (Continued)

Small Signal Pulse Response (LM148)

Gain Bandwidth

Inverting Large Signal Pulse Response (LM148)

Slew Rate

Input Noise Voltage and Noise Current

Positive Common-Mode Input Voltage Limit

Negative Common-Mode Input Voltage Limit

Undistorted Output Voltage Swing
Typical Applications—LM148

One Decade Low Distortion Sinewave Generator

\[f = \frac{1}{2\pi R_1 C_1} \times \left(\frac{R_4 R_5}{R_3} \left(\frac{1}{R_{DS}} + \frac{1}{R_4 R_5} \right) \right) \]
\[R_{DS} = \left(\frac{V_{DS}}{V_P} \right)^{1/2} \]

\(f_{MAX} = 5 \text{kHz}, \ THD < 0.03\% \)

\(R_1 = 100k \text{ pot}, C_1 = 0.0047 \mu F, C_2 = 0.01 \mu F, C_3 = 0.1 \mu F, R_2 = R_6 = R_7 = 1M, \)

\(R_3 = 5.1k, R_4 = 12k, R_5 = 240, Q = NS5102, D_1 = 1N914, D_2 = 3.6V \text{ avalanche diode (ex. LM103)}, V_S = \pm 15V \)

A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back zeners in the feedback loop of A3.

Low Cost Instrumentation Amplifier

\[V_{OUT} = \left(\frac{2R_2}{R_1} + 1 \right) \cdot V_S - 3V \leq V_{IN} \leq V_S + 3V, \]

\(V_S = \pm 15V \)

\(R = R_2, \text{ trim } R_2 \text{ to boost CMRR} \)
Typical Applications—LM148 (Continued)

Low Drift Peak Detector with Bias Current Compensation

Adjust R for minimum drift
D3 low leakage diode
D1 added to improve speed

Low Pass

Universal State-Variable Filter

Tune Q through R0,
For predictable results: \(\frac{Q}{f_0} \leq 4 \times 10^4 \)
Use Band Pass output to tune for Q

\[
\frac{V_{OUT}}{V_{IN}} = \frac{N_{HP}}{N_{LP}} \quad D(w) = \frac{S^2 + \frac{S \omega_0}{Q} + \omega_0^2}{D(w) = \frac{S^2 + \frac{S \omega_0}{Q} + \omega_0^2}{Q} + \omega_0^2}
\]

\[
N_{HP} = S^2 \cdot H_{OHP}, \quad N_{LP} = \frac{S^2 \cdot H_{OLP}}{Q}
\]

\[
t_0 = \frac{1}{2 \pi} \sqrt{\frac{R_0}{R_1}}, \quad t_1 = R_1 C_1, \quad Q = \frac{1 + \frac{R_4}{R_3 + R_4 R_5}}{1 + \frac{R_6}{R_5}} \quad \left(\frac{R_6}{R_5} \right)^{\frac{1}{2}}
\]

\[
t_{NOTCH} = \frac{1}{2 \pi} \sqrt{\frac{R_1}{R_1 + 1 t_0}}, \quad H_{OHP} = \frac{1 + \frac{R_6}{R_5}}{1 + \frac{R_4}{R_3} + \frac{R_4}{R_0}} \quad H_{OHP} = \frac{1 + \frac{R_6}{R_5}}{1 + \frac{R_4}{R_3} + \frac{R_4}{R_0}} \left(\frac{R_6}{R_5} \right)^{\frac{1}{2}}
\]

\[
H_{OLP} = \frac{1 + \frac{R_6}{R_5}}{1 + \frac{R_3}{R_0} + \frac{R_3}{R_4}}
\]

TL/H/7786–11
Typical Applications—LM148 (Continued)

A 1 kHz 4 Pole Butterworth

Use general equations, and tune each section separately

\[Q_{1^\text{st} \text{SECTION}} = 0.541, \quad Q_{2^\text{nd} \text{SECTION}} = 1.306 \]

The response should have 0 dB peaking

A 3 Amplifier Bi-Quad Notch Filter

\[Q = \sqrt{\frac{R_6}{R_7}}, \quad f_0 = \frac{1}{2\pi \sqrt{\frac{R_8}{C_1 + C_2}}}, \quad f_{\text{NOTCH}} = \frac{1}{2\pi \sqrt{\frac{R_6}{R_9 R_1 C_1 C_2}}} \]

Necessary condition for notch: \[\frac{1}{R_6} \frac{R_1}{R_7} \]

Ex: \[f_{\text{NOTCH}} = 3 \text{ kHz}, \quad Q = 5, \quad R_1 = 270k, \quad R_2 = R_3 = 20k, \quad R_4 = 27k, \quad R_5 = 20k, \quad R_6 = R_7 = 10k, \quad R_8 = 100k, \quad C_1 = C_2 = 0.001 \text{ µF} \]

Better noise performance than the state-space approach.
Typical Applications—LM148 (Continued)

A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)

\[
\begin{align*}
R_1C_1 & = 50.9k, R_2C_2 = 50.9k, R_3 = R_4 = R_5 = 100k, R_6 = 10k, R_0 = 50.9k, R_1 = R_2 = 155.1k, \\
R_1' & = R_2' = 50.9k, R_4' = R_5' = 100k, R_6' = 10k, R_0' = 5.78k, R_{L'} = 100k, R_{H'} = 248.12k, R_{T'} = 100k. \\
\text{All capacitors are 0.001 } \mu F.
\end{align*}
\]

Use the BP outputs to tune \(Q', Q \), tune the 2 sections separately

\[
R_1 = R_2 = 92.6k, R_3 = R_4 = R_5 = 100k, R_6 = 10k, R_0 = 107.8k, R_L = 100k, R_H = 155.1k,
\]

\[
\begin{align*}
\omega_c & = 1 \text{ kHz, } \omega_s = 2 \text{ kHz, } \omega_p = 0.543, \omega_z = 2.14, Q = 0.841, \Gamma_p = 0.987, \Gamma_z = 4.92, Q' = 4.403, \\
\text{normalized to ripple BW: } \\
\omega_p & = \frac{1}{2\pi} \sqrt{\frac{R_p}{R_S}}, Q' & = \frac{1}{2\pi} \sqrt{\frac{R_p}{R_S}}, Q & = \left(1 + \frac{R_4 R_3 + R_4 R_0}{1 + R_6 R_5} \right) \times \sqrt{\frac{R_S}{R_p}}, \\
R_p & = \frac{R_H R_L}{R_H + R_L}
\end{align*}
\]
Typical Applications—LM149

Minimum Gain to Insure LM149 Stability

\[A_{CL}(s) = \frac{V_{OUT}}{V_{IN}} = \frac{-4}{1 + \frac{5}{A_{CL}(s)}} = -4 \]

\[V_{O} \approx \pm 5 \text{ VOS} \]
\[V_{IN} = 0 \]

Power BW = 40 kHz
Small Signal BW = G BW/5

The LM149 as a Unity Gain Inverter

\[A_{CL}(s) = \frac{V_{OUT}}{V_{IN}} = -1 \]

\[V_{O} \approx \pm 5 \text{ VOS} \]
\[V_{IN} = 0 \]
Small Signal BW = G BW/5

Non-inverting-Integrator Bandpass Filter

For stability purposes: \(R7 = R6/4, 10R6 = R5, C_C = 10C \)
\[f_0 = \frac{1}{2\pi \sqrt{R6C}} \]
\[Q = \sqrt{\frac{R6}{R5}} \]
\[\frac{R0}{RIN} = \frac{R0}{RIN} \]

For \(f_{Q MAX} = 20 \text{ kHz}, 10 \)
Better Q sensitivity with respect to open loop gain variations than the state variable filter.

R7, C_C added for compensation
Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz)

Duplicate the above circuit for stereo

\[f_L = \frac{1}{2\pi R_2 C_1}, \quad f_B = \frac{1}{2\pi R_1 C_1} \]

Max Bass Gain \(\approx (R_1 + R_2)/R_1 \)
Max Treble Gain \(\approx (R_1 + 2R_7)/R_5 \)

as shown: \(f_L = 32 \text{ Hz}, \ f_B = 320 \text{ Hz} \)
\(f_H = 11 \text{ kHz}, \ f_B = 1.1 \text{ Hz} \)

Triangular Squarewave Generator

\[f = \frac{V_{IN}}{K}, \quad K = R_2/R_1, \quad 2V_K \]

\(K < 25V, \ V_T = V^-, \ V_S = \pm 15V \)

Use LM125 for \(\pm 15V \) supply

The circuit can be used as a low frequency V/F for process control.

Q1, Q3: KE4393, Q2, Q4: P1087E, D1–D4: 1N914
Typical Simulation

LM148, LM149, LM741 Macromodel for Computer Simulation

For more details, see IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974

\[\beta_{ne} = 112 \quad I_S = 8 \times 10^{-16} \]
\[\beta_{o2} = 144 \quad C_{o2} = 6 \, \text{pF} \text{ for LM149} \]
Connection Diagram

Dual-In-Line Package

Top View

See NS Package Number J14A, M14A, or N14A
LM148J is available per JM38510/11001

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J)
NS Package Number J14A
Physical Dimensions inches (millimeters) (Continued)

S.O. Package (M)
Order Number LM348M
NS Package Number M14A

Molded Dual-In-Line Package (N)
Order Number LM348N or LM349N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor
Europe
National Semiconductor
Europe
Fax: (+49) 0-180-530 85 86
Email: onwga@tecm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.
13th Floor, Stairct Block,
Ocean Centre, 5 Canton Rd,
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.